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We present an approach to the problem of light propagation in turbid mec 2 based on the path in-
tegral formalism. The method of analysis provides solutions to the time-depenc. “n* cquation of radiative
transfer for a number of cases for which known approximations, including the .'1ffusion approximation,
are not applicable. The theory and experiments show that trajectories of pnoton traversing a turbid
medium cluster around a well defined, time-resolved path called a classical path. This concept is a
powerful tool, and it provides physical insight into optical propagation in turbid media.

PACS number(s): 42.68.Ay, 87.59.Wc, 05.60.+w, 78.20.Dj

I. INTRODUCTION

The study of light propagation in a highly scattering or
turbid medium is of great current interest, especially be-
cause of recent potential applications to medical prob-
lems, such as imaging. (For a review of recent work see
[1]D. Unfortunately, in most realistic situations, the
analytical solution to the equation of radiative transfer is
not known, and the limiting cases in which approximate
solutions can be obtained (diffusion approximation, the
Kubelka-Munk approximation, etc.) are not always
relevant for applications such as medical imaging. This
paper presents an approach in which the integral-
differential radiative transfer equation is reformulated in
terms of a path integral [2,3]. The approach provides
new solutions to the problem of light propagation in tur-
bid media, as well as new insights into the physical basis
of the process.

The most important issue to be addressed in perform-
ing optical imaging in a turbid medium is the type of
photons to be used: (i) nonscattering, (ii) scattered along
almost straight line (low-diffusive) or (iii) highly diffusive.
Obviously, (i) provides the most precise information. In
this case the problem can be analyzed by using geometri-
cal optics. Unfortunately simple estimates show that it is
nearly impossible to detect such photons for realistic
geometries: the number of nonscattered photons de-
creases as ~exp—(u, +ug)L, with L is the distance be-
tween the source and detector. For realistic biological tis-
sue, g is of the order of 100 cm ™!, which makes signals
almost undetectable for L >1 cm. The other limit (iii)
does not suffer from this problem—a large number of
highly randomized photons can reach the detector but,
unfortunately, because of the randomization which ac-
companies multiple scattering, it is very difficult to ex-
tract imaging information from the detected photons.
Thus it is important to explore the intermediate regime of
case (ii). Its main problem is the absence of accurate ana-
lytic solutions in the limit where the diffusion approxima-
tion does not hold.

As shown below, the path integral formalism can pro-
vide solutions which exhibit causality and contain infor-
mation about low-randomized photons. The other ad-
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vant? ¢ of the path integral approach is its introduction
of " .c concept of the classical path, which describes the
region of space where the largest number of the photon
trajectories are clustered. Knowledge avout the position
of the classical path can be used to extract optical infor-
mation in turbid media.

Photons propagating through a turbid medium from
point A to point B can be described using statistical con-
siderations. A photon originating at point A is elastical-
ly scattered multiple times, each time being deflected into
a particular angle with a well-defined probability, thus
forming a trajectory within the medium. Each trajectory
has a particular probability. By calculating this probabil-
ity and then summing over all possible trajectories, one
obtains the probability for the photon to travel between
two points in the medium. Monte Carlo modeling, the
standard numerical method for solving the radiative
transfer equation, simulates this process but does not esti-
mate the probability for a full trajectory.

The probability for a photon to traverse the scattering
medium from point A with radius vector r , to point B
with radius-vector rp in a time interval T can be written
as a path integral [4]:

P(I'AJB»T):fmr(t)eXp 2us(1—g)

—_— fOT['i'(t)]zdtJ

XJ(&(2)) , (1)

where the function
J(£())= fi)Q(t)exp Ii,us fOTdt QUe)[E(1)]P—1) ’

ensures that photons propagate at the speed of light in
the medium (¢ =1) at every point along the trajectory,
and Dr(1)=][¥_-,dr,. Here, integrals over all possible
intermediate points of the trajectory have to be calculat-
ed using appropriate limits: from — o to + « for an
infinite medium, from —o to O for semi-infinite
geometries, and so on. In this paper we shall always
consider the infinite geometry case, unless otherwise
specified. Integral (1) represents the solution of the equa-
tion of radiative transfer for the case in which elastic
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scattering is described by a Gaussian phase function. Al-
though Eq. (1) can be derived in a rigorous manner [2,3],
here we instead present a simplified but physically intui-
tive approach in which photons travel exactly one
scattering length I between two consecutive scattering
events.

II. PRELIMINARY CONSIDERATIONS

Consider a photon traversing a turbid medium at the
speed of light, ¢ =1, which undergoes elastic scattering
each time it travels exactly one scattering length /g,
where the inverse scattering length or scattering
coefficient ug=Ig'. The probability that a scattering
event at point i deflects the photon into the solid angle
dO,=sin?;,dd,dp; can be written in the form
p (3;)sind;dd,;d p; with p (J;) the phase function [5]. In
a turbid medium, p (¥;) is well described by a Gaussian
function

S S /i
o) TP | (%)

with (9?) the averaged square of the scattering angle. In
terms of the anisotropy parameter ={cos?),
g=1—1(9?) for small angles. The constant in front of
the exponential term ensures that the total probability for
a photon to be scattered in all possible angles equals uni-
ty. The probability distribution for the photon after the
scattering event is then

p(d;)= (2)

Pryrg,D)=[ [ -+ [drdr, -

The exponential term in Eq. (5) plays the role of the ac-
tion term exp(—iS/#) in Feynman’s formulation of
quantum mechamcs [6] and, following this notation, we

call Sz= T[#(1)]?dt the effective classical action for a
photon in a turbid medium. The function
J(i())=TI-,8(i?—1) represents the density of trajec-

tories along whlch the photon speed equals unity. As
shown in Appendix A, this function can be written as a
path integral [Eq. (A2)]. Combining all terms, we im-
mediately obtain Eq. (1).

III. DIFFUSIVE LIMIT

The probability distribution function for the case of
isotropic scattering, generally referred to as the diffusive
limit [5], does not follow immediately from Eq. (1), which
was derived in the approximation of small angle scatter-
ing. However, the approach presented in Sec. II can be
directly applied to the case of diffusive scattering by sim-
ply eliminating the angular dependence of the phase func-
tion. Thus in this case P(r 4,rp,T) is a path integral over
the function J(i(2)),

P(r 15 1)= [ "De(0) (1) . (6)

~dry[psm(1—g)] Nexp
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pml—g) P |7 2(1—g)
Xsind;d3,;d,dE,8(E2—ug?) , (3)

where d3r;=dx;dy,dz;, and &,=r Here, each
scattering event is labeled with an index i, so that i =0 is
the starting point, A, and i =N +1 is the finishing point,
B. The number of scattering events, N, is related to the
travel time, T, by N =ugsT.

Equation (3) can be rewritten in terms of the coordi-
nates r;. Making the small angle approximation

P(r;,r;_)d’t;=

i T

15‘,»=,uS\/(r,-+1+r,»_1—2r,» )* (which simplifies the calcu-
lation but is not essential), we obtain

P(r;1q,1;)
2
= __Pks a2
psm(1—g) P 2(1—g)(rf+1+"i~1 2r;)
XS((l‘i+1_fi)2_’ﬂ§2) . 4)

The probability for the photon to traverse the scattering
medium along a particular trajectory is given by the
product of probabilities, Eq. (4), at each point along the
trajectory. Writing f; =pg(r; ;—r;), and T, =p3(r;
+r1;,_,—2r;), with each raised dot signifying a time
derivative, we can now express this probability as an in-
tegral over all possible paths:

-—————f [¥(¢)]%dt

e IsE—1) (5)

i=1

[

The calculation can be further simplified by rewriting the
path integral in the form of a Fourier transform. The ap-
proximation of Eq. (A3) then gives:

J(E(t) )—Qf dwexp -—uof dt([i(1)]*—1) 7)

Physically, this means that we constrain the average
speed of the photon over its trajectory to unity, rather
than its instantaneous velocity. Interestingly enough,
this approximation does not change the final result for
the isotropic case, which can be derived rigorously.

We then compute the integral as

P(rA,rB,T)=fj.fDr(t)
X f_+°°de

Xexp [—imeTdt([i'(t)]z—l) . (8)

Since in this case the scattering is isotropic, each scatter-
ing can reorient the photon by an arbitrary angle with
equal probability, so the orientations of the initial and
final velocities are obviously not important. The trajecto-
ry can be written as a Fourier sine series with a funda-
mental period of T [6]. Thus
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R N2 for the trajectory can be chosen to be of the form
ri)="—-t+ 3 [an sin mnt +b,, cos ant } , 9) r(0)=0, r(T)=R which leaves only sin terms in Eq. (9).
T n=1 T As discussed in Ref. [6], the trajectories may be con-

sidered to be functions of the coefficients a, instead of r.
This is a linear transformation whose Jacobian is only a
function of 7. Then Dr(¢)x[[¥/4da,, and Eq. (8)

where the number of constants a, and b, is equal to the
number of intermediate coordinates that prescribed the

trajectory, which is 3N. The initial and final conditions reduces to
J
to N2t | R? 1 {mn |,
P(rA,rB,T):F(T)f_w dwnglf_wdanexp —ioT F—l+—2_ T | 2 , (10)

where the function F(T) can be determined from normalization of the probability. Each of integrals of a, can be com-
pletely separated and calculated independently, so we have

Foo R2 N/2 2T 32
P(r 4,15, T=F(T) [ “doexp |ioT [1—5 | T] |- , (11)
— o T |, =1 | me

This last integral can be calculated in the standard way by adding a small imaginary part to w and then allowing it to

tend to zero: w=w+ie with ¢—0. This gives

3N/4

s 2iT N2 3 Lt . \—3N/4 . R?
P(R,T)—llg(l)F(T) T nl;lln f_wdw(w+ts) exp |ioT I_F (12)
[
This integral takes on different values for R >T and . 2
R < T [7]. In the ﬁrs? case it is equal to zero, which sim- P(R,1)= T3B(3/2,3usT/4+1)
ply reflects the requirement of causality—there is not
enough time for photon initially at A to get to point B. 3usT R2
In the second case it is proportional to (1—R2/T?)*N/4, Xexp 4 In |1— T2 | [’ (1s)
and we can combine all spatially independent terms in-
side F(T). This gives When R << T, we immediately obtain
0, R>T P(R,T) " [ Ly (16)
3u T/4 = |— Xp | —
= 2 |7 47T 4T
PRD=pr) 1- X , R<T  (13)
T This formula is a standard result of the time dependent

where we utilize the fact that N =ugT. The function
F(T) can be found from the normalization condition
3ugT/4

R%R =1, (14)

2
1—7:2“

foTF( T)

which means that photon has to be found somewhere in
space, so that the overall probability equals unity. This
gives

2

F(T)=—; :
T3B(3/2,3usT /4+1)

where B (a,3) is the B function [7],

P(rA,rB,T)=f_+°°dwf.i7)r(t)Q exp 1

_ foT

diffusion approximation. As easy to see, Eq. (13) has the
correct properties for short times R ~T7. In contrast,
causality is not preserved in the standard diffusion ap-
proximation.

IV. SMALL ANGLE SCATTERING REGIME

We next consider the much more important and in-
teresting case for which scattering is not isotropic and the
phase function is highly peaked in the forward direction.
This is the case of relevance to biological tissue. The
solution to the transport equation for a sample of infinite
extent is given by the integral Eq. (1), which we simplify
in our standard way by choosing the density of trajec-
tories, J(i(2)), in the form of Eq. (A3). We then obtain

[i‘(t)]z—iw([i'(t)]z—l)]dt (17)

The same approach employed in the previous section can be used to evaluate this integral. We represent the trajectory
1(z) as the sum of two terms. The first term, which we call the classical path, r(¢), is the function in the exponent that
minimizes the real part and satisfies the initial and final conditions for coordinates and velocities (see [2] and Appendix
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FIG. 1. Schematic diagram of experimental geometry. Ex- - time(ns)
periment 1 uses fiber probe 1 with an absorbing (?bject present FIG. 2. Normalized photon path distribution measured by
(L =18 cm). Experiment 2 uses fiber probe 2 without an ab- placing the absorbing structure along the midline between the
sorbing object in the intralipid solution (L =5.5 cm). incident light and collection fiber.

B). The second term, q(¢), describes the variation around this classical path that allows us to satisfy the constraint on
photon speed. We thus have

r(t)=ry(t)+q(t) . (18)
Using this representation for r(¢), we can write the probability P(r 4,rg,T) in the following form:
T 1 .. + o i T,.
P(r 1, T)=Qexp |— fo 2—#;(—1—_—g)“1'§| f_w dw exp [lwfo (rgl—l)dt]
T 1 L2 . L.y a2
— ——q —iw(2iyq+ dt|, (19
Xf:quxp fo 2,uS(1—g)q iw(2tyq+q°) (19)

where the function q(¢) is chosen to satisfy the boundary conditions q(0)=q(0)=q(T)=q(7T)=0. This integral is ap-
proximately equal to (Appendix C)

_ T 1 2 ~3ys(1—g)T2 T . . -1
J g : [fo(l rcl)dt]

P(r 4,5, T)=F(T)exp , (20)

where, as before, F(T) is a normalization function. If we consider a slab of thickness L and introduce a coordinate sys-
tem so that the x and y axes are parallel to the slab’s surface and z is normal to this surface, then we can approximately
write

3/2 3ug(1—g)T/4
3us(1—g) _ (L2+D?) | ¢
P(r 4,15, W, T)=Q T T3 I_T
12 wr |’ w?
Xexp|{—————— 4+ |ID——— —_—— I, 2n
us(1—g)T 2 us(1—g)T
where D=(D,,D,) is a vector that represents displace-
x(cm)

ment of the detected photon from the slab’s axes and the
vector W describes the angle at which the photon
emerges from the slab. The components of W=(W, W)

are the angles it makes with the x-z and y-z planes, re- T T
spectively, and Q is a normalization constant. /é\ 1 /]

As can be seen, the probability depends upon the two =) N 500ps
factors, one resembling the “diffusion” term [Eq. (13)], N 5 3 =
which dominates in the long time limit, and the second, 'rg B 580Ds n
which comes into play at short times, and is most impor- 2 3 =
tant for the early photons that follow short, “almost B §6 S N
straight” trajectories. 4 1 1 L

V. EXPERIMENT AND COMPARISON
WITH THEORY
Two sets of experiments were carried out to study FIG. 3. Experimentally measured photon paths for back-

qualitatively and quantitatively features of photon paths scattering geometry.
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FIG. 4. Time-resolved signal I for transmission (a.u.) through the slab of turbid media with thickness L =5.5 cm. Different curves
represent two different angles of the problem 6=40° and 6= —40° displaced on D, =2 cm from the axes of symmetry. Experiment
(dots) (@) Cipey =10 ml, (b) C;p,y =15 ml, and (c) C,,,, =20 ml vs theory (solid lines) (a) us=3 cm™!, g =0.8, (b) us=6 cm ™', g =0.8,

and (c) us=8 cm™!, g =0.8.
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in turbid media (Fig. 1). The experiment used ~ 150 fs
excitation pulses generated by a Coherent Mira 900
mode-locked Ti:sapphire laser pumped by a Coherent In-
nova 400 multiline argon ion laser, and a streak camera
detection system consisting of a Hamamatsu temporal
disperser C1587, synchroscan streak unit M1955, and
tuning unit M1954. The incident wavelength was 800 nm,
the repetition rate 76 MHz, and the average power 1.5
W. A small portion of the excitation light, deflected by a
quartz plate to a fast photodiode (D), was used as the op-
tical triggering signal. Transmission signals were collect-
ed by a 200 um core diameter optical fiber. The other
end of the fiber was imaged onto the streak camera slit.
The system resolution, 10 ps, was determined by the in-
trinsic response of the streak camera, the temporal
dispersion through the optical fibers, and optical trigger
jitter.

The first set of experiments was designed to show qual-
itatively the presence of classical paths, r(¢), for a back-
scattering geometry. A small absorbing sphere (8 mm in
diameter) was positioned inside a glass fish tank
(8X 12X 16) in.? containing dilute intralipid. The separa-
tion between the incident laser beam and collection fiber
is 7 cm. The scattering length, /g, is varied between 2 and
10 mm by changing the concentration. The anisotropy
coefficient g =0.75, which is much smaller than ideal be-
cause smaller values of g tend to randomize the photon
paths and thus reduce spatial resolution. The absorbing
structure was used to probe the photon paths within the
scattering medium. To do this, the absorber was placed at
a given position within the medium and the time-resolved
diffuse reflectance signal was obtained with and without
the absorber present, from which the normalized
differential signal was obtained (Fig. 2). As can be seen,
the resulting curves are very sensitive to the position of
the absorbing structure. By varying the position of the
absorber in the medium, the time resolved photon path
distributions can be mapped out (Fig. 3). Similar experi-
ment can be done for transmission mode (data not
shown).

The second set of experiments was designed to check
the theoretical predictions, Eq. (21), for the time depen-
dent transmission through the slab of scattering media.
The transmission experiments were conducted in a 15 cm
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diameter cylindrical glass container. For the scattering
medium, we used a stock solution consisting 10% intrali-
pid solution diluted in water to the appropriate concen-
tration. The scattering properties of the media were es-
timated using Ref. [8]. The thickness of the scattering
media was 5.5 cm.

We compare experimental data with the theoretical
predictions that follow from Eq. (21). Note that the
probability calculated in Eq. (21) is the relative intensity
I, /I, observed in the transmission experiment. As
shown in Fig. 4, good agreement between theory and ex-
periment can be obtained by varying only one parameter,
the reduced scattering coefficient us=pgs(1—g). This
agreement exists not only for the decreasing (“diffusive”)
part of the curve, but also for the increasing part which
represents the earliest highly “nondiffusive” photons.
Moreover, Fig. 4 suggests that Eq. (21) has the correct
angular dependence. The scattering coefficients and an-
isotropy factor that we used here, ug=3.0, 6.0, 8.0 cm™
and g =0.8 are not exactly the same as suggested by Ref.
[8] (ug=4.0, 6.0, 8.0 cm™!, and g=0.7), but close
enough to be in the range of experimental error. The
disagreement is larger for small values of pg, which cor-
responds to the lowest intralipid concentration. Rough
estimates indicate that this difference can be explained by
the effects of the collimated beam.

VI. CONCLUSION

As can be seen, the path integral approach can be quite
valuable for the problem of light propagation in turbid
media. Although this technique is more complicated
than the standard diffusion approximation, it overcomes
the main problem of that approximation, namely: how to
consider the nonrandomized or earliest photons, which
can provide valuable imaging information in highly
scattering media.
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APPENDIX A: DENSITY FUNCTION

The density of trajectories, J((¢)), can itself be written as a path integral, using the Fourier transform of the & func-

tion,
T A
sy ® ‘0 (+2_
JE= |- ,-I=Ilf~w exp{iQ,(i2—1)}dQ,
" N
= |57 [ [ [ddQ, --doyexp i}_‘,Q,.(f,?—l)l. (A1)
T k=1
The last expression can be easily rewritten in the form of a path integral:
N
. 11 0 . T 2
Je)= |5 | [ D exp ins [0t~ at | . (A2)
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The limits of integration here mean that initial and final points are fixed, and that we cannot vary €(¢) at these points:
Q(0)=Q(t)=0. Obviously this integral, which represents the density of trajectories that has the proper features
(prescribed initial and final conditions and photon speed equal to 1), is not trivial. However, for the sake of simplicity,
we can approximate this density by considering that trajectories that have correct boundary conditions and average

photon speeds equal to unity:

=08 [ [T —1dt | =2 [ " exp

where constant Q can be determined from normalization
of the probability.

APPENDIX B: CLASSICAL PATH

The real part of effective Lagrangian,

1

Lg= 2s(1=g) [£(0]*, B1)
can be minimized using Euler’s equation
d? | OLen (B2)
dt* | ot
to give the solution of the form
r (t)=at*+bt*+ct+d, (B3)

which we will call a classical path [2,4], where a, b, c, and

iwfont(f,?—l) ]dm ,

(A3)
I
_ (VT+Vo)T_2R 3
ry(t ———TT"—“—Z‘
3BR—(vyp+2vy))T
+ LSy (B4)
T

APPENDIX C: APPROXIMATE FORM OF THE INTEGRAL
FOR THE SMALL ANGLE SCATTERING REGIME

We can approximate q(#) in the form of series by sine’s
square, that give us the right initial and final conditions
for the function and its first derivatives:

N/2 wt

=¥ a, sin’ T

n=1

(Ch

Obviously, this representation of q(¢) is an approximation
because the functions we choose do not form a full space.
However, we believe they can give a decent presentation
for variation of the trajectory. The integral we have to
estimate is

d are constant vectors that can be found from initial and . c . a2
final conditions on the trajectory: r(0)=0, (0)=v,, I= f 2ug( 1— ) q —io(2t,q+q7) |dt (C2)
r(T)=r, (T)=vy. It gives the following equation for the
classical path: By substituting Eq. (C1) into Eq. (C2), we have
J
T 1 N/2N/2 4n 2k >m* 2nrt 2kt
I= -
fo 2p5(1—g)n§1k§1a"a" ¢ © ST %
. N2 n7rt ; 2n7rt NZN/2 nk? 2nrt 2kt
—iw )y a,—— + a,a, sin dt . (C3)
n=1 nzl kzl Tz T T
In the first approximation, the second term in Eq. (C3) can be neglected. This gives
N/2 4_4 2,2
= 2n°m ; —iw n-mw i (C4)
We can then rewrite Eq. (19) in the form
. _ T__L_..z
P(r,,rg, T)=F(T)exp fo 2,us(1—g)r°1dt]
N/2 4n2m? 372
x [doexp [io [~ Dt T | : (C5)
[Z doex fio [ I i
The last integral is approximately equal to [9]:
2
T 1 .2 3ﬂs(l_g)T [ T, ., ]—l]
= - — —_— —1)dt . (C6)
P(r, ,rg, T)=F(T)exp fo Z;LS(l—g)rddt exp{ 2 fo (fg—1)
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